BT接続の沼にはまった。HC-05/HC-06ともに在庫が山の中から見つかり確認をするのだが、オリジナル品とコピー品の混在なのかも含めて曖昧で見えてきたことがあった。
PINコードの設定コマンドがエラーになり、PINコードの確認ではPINコードが6桁の表示になるのだった。
PINコード桁数については、さまざまなBT機器の中で4桁設定が占めていたのと以前の開発記録では4桁だったので混乱した。調べていくとBT規格の進展の中で6桁に代わっていったようでHC-05/HC-06の目指すIoT機器ではBLE規格などの時代になり6桁に移ったらしい。もっていたスマホアプリではPIN4桁設定だったのだが、新しい他のBT接続ターミナルアプリを調べると6桁に対応しているようで、スマホとの接続でも問題なく動作することが分かった。週末にS君が来た時にはBT子機となるHC-06タイプのモジュールを渡して彼のBT接続ターミナルソフトでも6桁設定で通信が出来た。
しかしながら、実際に彼がやりたい動作中にコマンド受信がしたいということには、別の困難があった。
彼が複数集めてきたスケッチはいわゆる単機能でloop関数の中でwhileループを組んでいるようなものばかりだったので、同時に処理をするためにはこうした処理をマージしなければならない。
S君とは哲学問答をするように、彼が実際にやりたいことを確認しつつそのためにはどうすべきかを解説する。
極端に言えば状態遷移図を彼に書いてもらうことだった。Arduino UNOの性能範囲で実現可能なハード設定にはなったので、この先は彼が設計をすすめることで出来てくるだろう。
彼には、時間管理も含めて指導したいので、予め帰りのバス時刻をめどにアラームをアレクサに頼んでおいた。普段ならばずるずるとやっていて母上に迎えに来てコールをしてからさらに続けるということだったが、アレクサがアラームした段階で進んできた内容を振り返りこのままでは、ここで出来ることも限られるので納得して今回は帰ってもらうことになった。小学生ではなくなり来月からは中学3年になるS君なのでそうした自立する姿も母上に見せられればと思う。年の離れた末っ子ぶりはわかるものの、逞しくなってほしい。
「Arduino」カテゴリーアーカイブ
ルンバみたいな掃除機を作りたい(2)
サーバー構築が叶ったS君は、3年越しのプロジェクトであるルンバを再開した。超音波センサでの距離計測、衝突予防で後進しつつ方向転換をして走っていくというものだった。
Arduinoにモータードライバーを搭載して3つのモーターを駆動する。2つは田宮のギアメカだ。残り一つは塵取りに掻き込むブラシモーターの予定だ。
駆動系統を整理して超音波距離センサで方向転換が出来るのを確認して3年前の課題クリアと思いつつ、家に持ち帰ると動作がうまくないらしい。
単三電池二個を搭載したモーター用電源では、モータードライバーでのドロップも含めてモーター駆動には不十分のようだ。三個搭載の電源ボックスと交換して安定動作になった。
彼の思いとしてはリモコン制御でスタートストップをコントロールしたいということもあったらしく翌週には超音波センサを組み込んで動作させてみたけどモーター駆動中は、動作しないらしい。
距離センサとして用いる超音波センサと超音波リモコンで行う信号検出が性能的には厳しいらしいということがわかり、距離センサをi2Cと接続のToF距離センサに変えてみた。
IoTサポートをしてきた経験から検出精度は対象の差があるけれど近接範囲についての壁検知ならば動作しそうだと思い実験をしてもらった。超音波同様にまっすぐぶつかる場合には検知するのだが。いずれにしても二つないと検知できないケースもありそうだった。超音波リモコンの検出自体はするのだが、どうも検知したコードが化けてしまうようだ。モーター駆動でのノイズが影響するのかリモコン受信部のアースにノイズが回り込むこともあるようだ。並行処理をしつつの超音波リモコン機能はArduino UNOでは難しいと判断してBluetoothモデムモジュールを使うことを提案した。
Bluetoothモデム(HC-05/HC-06)は、かつて3×3のバスケットボール用に開発した12秒タイマーでスタート・ストップをリモコン制御するのに用いていたのでインタフェースのシリアル速度さえ抑えておけばsoftwareserialでも十分に検知制御できて、シリアル接続のLED群WS2812Bなどで構成した大型表示部も制御できていたので問題はないはずだった。
大量にどこかに在庫していたのだったが、部品棚にあったのはHC-05の親機が見つかった。サンプルのスケッチとスマホ側のアプリを紹介しておいたら、彼なりに自宅で接続テストをしたようで、あいにくとアプリは現在の彼のスマホではAPIがマッチしないのか動作しないようで、別のBT接続のアプリを見つけて実験をしていたらしい。
自宅での実験するなかで、どうもHC-05が正しく応答しないようで壊れているのではないかという話になり次回来た時に交換してほしいという連絡がLINEできた。
こちらでも動作確認をしようということで、古いスケッチを持ち出してみたのだが、どうにもBT接続のターミナル接続とコネクトできない・・・。
互換土壌水分センサーの問題と修正
園芸の水やりの自動化などに使える土壌水分センサーは幾つか紹介されているが、接点むき出しでいるものでは心許なかったのです。
電極がカバーされたものが見つかったので今回購入して実験確認しました。
静電容量式土壌水分センサーというらしく、DIYの王道であるSwitchScienceで扱われているDFRobot社のものが有名なようです。これは最近の互換品として中華市場で売られている良く似たものでした。
水分センサーにはこれらの二つのタイプがあり、産業用に利用されているもののタイプ毎の比較などをされているサイトもありました。最初に示した抵抗式のものはコンパレータを用いて閾値の設定からの上下をデジタル値で出力するものでしたが、静電容量式の物は、水分量の変化をアナログ電圧で出力してマイコン側で判定する使い方です。こちらのほうが汎用性がありそうです。
実際に評価してみると、水分検知してからの反応がとても遅くて回路図の時定数である1秒を越えて二分程度かかるという結果がでました。参考までに抵抗式の物も図りますとすぐに反応します。何か間違っているようでした。
オリジナルと思われるDFRobot社には回路図が公開されていたので、それをベースに互換品の中身を追いかけてみました。
アナログ電圧を出力する回路において、抵抗のアース側のランドが基板全体の中での浮島になっていることが分かり時定数としてはADC回路側の入力インピーダンスが高くなっていたことから反応が遅くなっていたことが分かりました。マイコン側が計測用に内部での選択スイッチを接続するときに初めて回路として充電が始まるという形になっていたようです。
計測さえ続ければ遅いなりに実測値は近づいていくというものでしたが二分程度を要しての計測はもはやセンサーとは言えないものでした。写真はワイヤリングペンで問題の箇所を修正したものです。
Arduinoで学ぶ組み込みハンズオン合宿をしてきました(1)
先週末11/24と11/25は、依頼された組み込みハンズオン合宿の講師をしてきました。開催場所は茨城県神栖市の旅館を借りてのものでした。オープンソース活用などを進めておられた知己が地元の母校(波崎工業高校)の後輩たちもターゲットにして開催する刺激を与えることを目的として企画されましたが、実際には若手抜きでの開催となり準備推進といった様相となりました
先日開発したスポーツ用の12秒タイマーの実装例などの解説を中心にしてカスタマイズや、センサー・アクチュエータを活用できるところまで参加された方々のIDE環境のセットアップから二日間で漕ぎつけるというものでした。ほかにも教育研究されている宇都宮大学の先生や波崎工業高校の先生のお話も交えての内容で縦軸が私の担当するハンズオンの合宿でした。
地域の工業高校生の参加勧誘に向けては、社会連携などの活動としてのお話しにつなげていく中でのものでしたので準備に手間取り実際の生徒さんたちの都合には十分な宣伝期間などが不足して、社会人の方たちの参加のみに限定されましたが教える側としてのトライアルとしては寧ろIT環境になれない方たちも含めてのものとしての挑戦でもありました。
最初に、自身の邂逅となるマイコン遭遇となる組み込み人生について自己紹介をかねての経歴説明の中でマイコン開発の進め方にどう携わってきたのかを話して開発環境への取り組みが35年ほど遡る時代背景での高級言語Cのマイコン実装実現での経験について話をして、現代にいたるまでの話をつなぎました。これには今日のハンズオンへの伏線を隠していました。同様な内容は先月開催されたヒューマンネットワーク高専の全国交流会でのプレゼンと被ります。
手元に皆さんが使えるようにしたのは中華製のArduino互換基板です。今回参加された方々はUbuntu, Windows, MacOSと様々なタイプのマシンを持ち込まれていたのでIDEのインストールを通じて最近のライセンス問題やArduino自身の出自や、Arduinoプロジェクトの御家騒動、USB変換チップの模造品問題などについても触れて今回のものに搭載されているものが中華国家が推進しているCH340が搭載されていることに触れて、識者の方にも経験のあるUSBケーブルが動作しなくなったある時期の時代背景についても触れて実態について紹介しました。こうした技術上の現代史を知らないまま、これからの時代を生きていくうえでは重要な点と理解しています。
折角の機会なのでマイコンの構造を解き明かしつつ内部の構成についても解説を加えるという回りくどい教え方でもありました。
Arduinoのベースとなるマイコンの基本を知ってもらう意味で機械語の動作が目視でみたりすることが出来るマイコン黎明期に登場したAlnair/IMSAIなどのレプリカマシンであるLegacy8080(科学少年出版)を持ち込みマイコンとしての動作の概念であるメモリ、バスライン、デバイスの仕組みについて解説して自身が開発して成果を上げてきた話とシンクロしながら説明をして、組み込みの基本となるリセットからのマイコン動作も含めてデモすることで実際にマイコンをステップ動作させることで理解した雰囲気に導きました。
Arduinoの良いところはプロトタイピングのために徹底した抽象化が図られていて本当の意味で知らなければならない細かい所作については理解しなくても使い込んでいくことが出来ることでもあるのですが、そうした隠ぺいした部分について詳細な理解までは別にして気にする程度に説明することで実際のモノづくりに必要なことを実装例を通じて示していきました。
実際に作ったスポーツタイマーは12秒計測を行う大型のLEDでフラッシングを脈動するような形で色や照度を変えつつ表示計測して任意に停止したり巻き戻したり進めたりという実現したものの説明を先に行いました。これで参加される方がこれから説明しようとするものについての動作上の理解をしてもらうことが出来ました。
具体的な動作例を示すことで、その中身のソースコードを説明していくことで必要な記述が何を示していくのかについての関心が増します。
150個のLEDピースが連結されたNeoPixelというデバイスが三本の線で接続されていることを示しつつ、信号線の定義をソース上で行うこと、実際の基板の上での読み方や複数のピンが存在する中で使える二つのタイプのピンAnalogの入力にもつかえるピン、デジタルの入出力に使えるピンなとの機能についての説明や配置上の自由などにふれ、これから制御しようとしているLEDのシリアルテープ構造のもの自体が一つずつにマイコンが搭載されていて3色のLEDの色情報と輝度情報を持っていることを教えます。セグメント構造、色の制御、時間経過での色と照度変化のための構造定義とロジックについてから前後しますが、ArduinoのプログラムにはMainが存在せずにSetupとLoopしかないことを説明して、普通のブログラミングであればMainから終了すると終わってしまうのが、Setupが最初に一度だけ呼ばれてから、Loop関数は繰り返し呼ばれてしまう構造であることを伝えて、ようやくソフトの制御の流れについての読み方を説明していくことを伝えます。スポーツタイマーではBluetoothの端末からのコマンドで動作することを示していたことは示していましたが、あえてシリアルインタフェースは使わずにソフトシリアルを使っていることを理由も含めて説明していくことで深みに嵌めていきました。
7セグメントの構造の1.5桁構成の表示機で制御するためのLED構造が数珠つなぎで一番Arduinoに近いものからアドレスが降られていることを伝えて制御したいセグメントを定義するスタートとエンドの番号を定義していく箇所。
そのセグメントが0から12までどの様に点灯するのかということを定義したデータ配列。
三色のバランスを段々変えていき、緑から始まって、徐々に赤くなっていく色の変化を定義した配列。
一秒刻みで毎回ハッキリと輝度を上げて表示しつつ経過時間で薄くなっていくための輝度調整の計算ロジック。
以上開発した関数を組み合わせて、ある経過時間での残り時間を、その時の秒数と、その時の輝度と色で150個のLEDに与えるデータとして編集する関数群として呼び出す仕組み。
最後に一気にそのデータを瞬間的に高速に払い出すための関数。
NC加工をしてみる(6)
PCBEとOriminの組み合わせでも強度の取れる形でUSBコネクタやDCJACKをDCJACKを実装できるスリット型の角穴を作成することが出来た。
秋月電子の定番ジャックだ。
基板加工機での刃の切れ味からか、バリが気になった。金属ブラシを取り付けてこの後サンディングを行った。角穴の嵌合は問題なさそうだ。
そしてIoT機器試作セットは仕上がった。このあと、ケースに組み込んで改善内容について学ぶことが出来た。
NC加工をしてみる(4)
今回のお題は、市販の防水樹脂筐体に収めるある程度数を作ることを想定したモノづくりのお手伝いだ。里の加工で出来ることはしれているのだが、そこはベンチャー会社の人たちにしてみたら他に頼むことよりも出来るだけ作れるものなら最初にどこまで作れるのかは知りたいということらしい。
基板手配は、当初の課題だったが、サイズの問題などからEAGLEからKiCADに移行して新しい機能などを覚えて試作品としてOriminを用いたUSBCNCで削り出して試作評価というフェーズが簡単に崩れてしまった。良くも悪くも今までの使い方がCADというよりもアートワークを手で引いているようなPCBEだったりしていたことから制限を外して挑戦しようということでもあったのだが、試作用もう少し融通の利く環境構築も必要のようだ。
基板がとりあえず、KiCADのアートワーク状況を手コピーしてPCBEのスクリーンにプロットしていくのだがPCBEの柔軟な運用としてプロットポイントを自在に原点調整やピッチ変更が出来るのが幸いしてほどなく出来るのだが、あいにくと強度が必要なUSBコネクタやDCジャックの類の角穴などは折角モデルを使ったのが仇となっていたので丸で近似するしかなかった、作図は簡単だがはんだ付けの苦労はありそうだ。
これやArduinoの基板をスペーサーで保持するのだが、その設置用の穴開けが課題になりそうだということは先週のトライアルで分かった。穴あけ位置を指示する樹脂製のテンプレートを作成してそれ越しに穴あけをすることにした。これを作るのは今回は3Dプリンターで少し垂直のガイド性もつくようにした。
結局Arduino以外も含めて全体のテンプレートが丁度3Dプリンターで作れそうなので穴のサイズごとに色指示のシールを貼って効率が上がるようにしてみた。
Arduino UNOには使えないコーナーピンが一か所あり、設計上は3mmのビスを使うことになっているのだが実際にあたってしまいネジ締めが出来なかったりもしているので、ここは2.6mmのネジを一か所だけ使うようにした。そんなこともあったれして実はバタバタとしたNCデータの流用だった。転写する段階で読み間違えたりしてサイズ位置が合わなかったこともあったので、もう少しレビューを落ち着いてしたほうが良さそうだった。問題のUNOのマウントには樹脂製のスペーサーを使わないと背面のパターンも当たってショートしそうな感じもしたので手持ちのジュラコンのパーツを見つけ出してくみ上げてみた。
明日、全体試験をしてもらって来週はいよいよ顧客先で稼働評価試験となるらしい。
NC加工をしてみる(3)
あまりこだわったことがない、基板加工にも今回は、取り付け位置の制限などから外形加工をする必要があったのだが、使ったP板CADはKiCADにしたところ、基板加工機CIP100に付属してきたOriminでは対応できないことが分かり、急遽今まで使っていたPCBEで加工データの位置を取り込んで穴加工とその配線を通すという形になった。昔でいうところのアートワークを引いている感じだ。
作りたい基板サイズは45×105ほどなのでCIP100(Max 160×100)としては二枚取りが出来そうなあんばいなので外枠の一部は今回基板の縁に添わせる形で刃物の摩耗も防ぐことにした。取り付ける部品を押える目的のインシュロックを通す必要もあって角穴データは溝切の一環で外形データと通すことが出来たのだが、基板自体は四角にしかすることが出来ず一部を切り込んだ形にはできないことが判明した。対策は簡単に切り落とせそうな角穴をその位置近くに置くという代替案だ。KiCADで通らなかったデータにはDCジャックのランドパターンもあったようだが、これは少し大きめのパッドで逃げることにした。
本番の基板とパターンと部品配置だけを似せた状態でのデバッグということになる。試作動作完了となれば、基板発注という展開になる。
NC加工をしてみる(2)
微妙な配置にあるのは、今回作成したリレー制御基板の穴加工位置についたガイドである。適当にリブをつけて強度を持たせようとしているのだが、矢印をエンボスにしてあるのは、ターゲットの基板の角に寄せるためのマークである。
ABSもしくはポリカーボネートで明日作成する予定だが、下にはエポキシ基板も当てようかと思っている。実際にはシャコ万力で押さえてハンドドリルまたはボール盤であけることになりそうだ。
位置精度が必要なものは、あとArduino UNOのマウント部分もあり、同様なガイドを作成する予定だ。下の穴あけを依頼すると加工費用だけで材料の25倍以上の費用となるらしい。工賃は馬鹿にならないし、実際に先日配置の指示だけを紙に出して貼りつけて穴あけを試みたのはNGだった。少なくともオートポンチを施工すべきだったようだ。
精度を出すのが難しいことは確かにその通りなので専用冶具を3Dプリンタや基板加工機で作成するのは今風なのかもしれない。
NC加工をしてみる(1)
実用的なNC加工を直接試みようとすると現実的には、素材の固定やサイズなどの制限がありまた工夫が必要となります。里にあるNC加工装置は、オリジナルマインド社のQT100とCIP100あとはsmartDiysのFaboolLaserMiniです。
今回IoT装置となるものは、配電ボックスなどに用いられるタカチのケースなのですが、搭載部品となるArduinoや専用シールド基板などを内部のベース板に取り付けるための穴加工が必要となります。ほかにもいくつか取り付けるパーツはあるのですが、精度が必要なのは前述のものたちです。樹脂でできているベース板なのですが裏側にリブがあったりして実寸の穴位置加工図面を貼り付けてボール盤でトライしてもらいましたが、うまくいかないというのが経緯です。
この板自体は安いものですが、本来は現地でブレーカーなどを止付けたりするもので精度の必要な穴位置が要求されたりはしないものなのでしょう。一応メーカーサイトには加工受付のリンクもありましたので、クライアントの意向もあって見積もり問い合わせをしてみました。ざっくり追加の穴加工16箇所と材料込みで一枚の場合には7000円なりということで中間マージンもあるのでしょうが、さすがにクライアントさんの要望範囲ではなさそうなので丁重にメーカーさんにはお断りを入れつつ、数量的には100台くらいの加工までをしなければならないので再度見積もりはお願いしました。
精度の必要な穴加工を実現するための冶具作りをNCで行うのが現実的かと思われましたのでガラエポ基板かアルミ板を加工してブロック単位でゲージを作り、さらに必要であれば垂直精度を助けるためのガイドパーツを3Dプリンターで作ろうというのが今回のNC加工トライアルとなります。大きなサイズのNCフライスがあればよいのですが、あいにくと160×100がサイズ制限となるので精度の必要な基板取り付け部分などのブロック単位で冶具を作ることにしました。
この週末は、その報告ができるかと思います。
Arduinoプラットホーム活用の形?
先日作成した、ショットタイマーの操作アプリの依頼を受けて地元学生に開発アルバイトとして展開している。高専学生のバイトとしては、手頃で勉強にもなるということで、見込みは開発時間は10時間凡そ2日で出来ると踏んで依頼元には見積をしてゴーサインが来たのだった。監修のオーバーヘッドと里の利用費用も加算している。とはいえ破格な汎用に使える今どきの携帯アプリはweb apiで作るとマルチプラットフォームに対応が済むらしい。
1日目は、仕様と開発環境のすりあわせを調査がてらしてもらった。ランチ交え始めたのだったが検討を進めてもらうと実は生憎と作ってあったショットタイマーに付けていたBT2.1世代のモジュールに対応するのは難しいらしくBLEに移行する必要があるらしい。旬のIoT環境で様々な物に対応していくのはそうした事なのだろう。Androidに限れば出来るらしいのだが。
依頼元に確認メッセージを入れて開発に使用したArduinoUNO+BT2.0からの移行提案をプランをいくつか示して問い合わせを入れた。ほどなく回答が届き対応機種を減らしたくないという大本の要望に基づいてBLEへの移行となった。
既に開発段階で採用しかけたものが最近流行りのESP32だったのでこれもしくは他のモジュールにするかは納期と完成度次第ということでアプリ開発アルバイトを進めるために、先ずはベースの環境をIoT Expressに戻して当時課題だったメインデバイスのテープLEDの駆動とピン割り付けなどの変更をした。
テープLED自体は、割り込み制御でイケる感じだった。途中で投げていた環境だったが回路図と皆さんのネット情報には解離があり、少し嵌まったが問題なく解決した。実装としてはもう少し互換性を保つ方法もあるのではないかと思うがいたしかたない。