3Dプリンター整備状況

里のRobo3Dプリンターは、Reprapベースのものですが、Kickstarterのベータ品から始まりましたが、改造改版を重ねて、ほぼ最新モデルと同等になっています。

強力なホットエンド E3D Volcanoを搭載しました。最大0.4mmの積層指定ができます。
印刷速度を上げたい場合には、従来より二倍ほどの速度で印刷が可能です。ただし、積層密度を0.4mmにした場合ですが・・・。
V6と比較すると長さが10mmほど増えました。これにともない造形物の高さが低くなりました。
他にもZ軸のリニアシャフトを国産標準品に変えた為オリジナルよりさらに10mm短くなりましたのでトータルで20mm低くなりました。放熱フィンとホットエンドの間が分離されているのが特徴で熱がフィラメント送り出しの部分では十分に冷えるようになっています。
image

E3D Volcano(左)とE3DV6(右)の比較をみると、フィラメントの溶融スペースが長いことが分かります。
image

image

ホットエンドが強力になったので、放熱フィンの部分でのファンダクトも耐熱を考慮してアルミ板と板材で作りました。さらにマウント用のパーツをPLAで作り冷却用の3cmファンを搭載しています。取り付けはextruderのベースにつけています。
image
image

アクリルで、固定用ノリのマスクを作っています。ヘアーリング用スプレーを使うようにしています。従来の3M 77は強力すぎて後処理が大変でした。
image

フィラメントホルダーは上部に簡易な形にしてサイズに応じて変えられるようになっています。

image

ケースの底部は、下駄を履かせて冷却用の空気が取り込みやすくしました。
IMG_5703

ホットエンドの強化などに伴い、RAMPSシールドの放熱が必要となりクーリングファン4cmをマウントしています。この空気取り入れのためにかさ上げをしています。IMG_5709

PLA出力時に水平出力ができるように空間で強力に冷却する目的でラジアルファンによるダクトを作成してヘッド先の高さに合わせて細い強力な風が出るようにしています。
IMG_5712

ABS素材の処理顚末

PLA素材での、出力詰まりに奔走していたのだが、既報のようにシーズニングと呼ばれる油をさしたりすることで以下のようなクーリングファンホルダが出来るようになっていた。

image

しかし、溶けてしまった

image

ABS素材の出力を改善しようとして背面にファンヒーターをおいて熱風を供給したのがキッカケでした

image

ABS素材の出力では、ベッドを高音にして80度ほど、その上その温かい雰囲気を確保した中で出力をしないと収縮がおきてしまうのです。

このプリンターは、オープン構造なので、工夫が必要なのですが、まずは外部から熱風供給をすることで解決をみようとしたのですね。背面にファンヒーターが見えますね。

プリンターのヘッドは、およそ240度(ABS素材の場合)となり、上部の冷却用のフィンの部分も100度を超えていました。先日作成してあったPLA素材のカバーが溶けたのはこの温度に耐えられないからでした。

そして、このファンホルダを付けて冷やさないと何の出力も出来なくなるのです。

仮に溶けないような素材でカバーを作らないと進まないのでアルミと木で作りました。

image

これで、先程のファンヒーターで熱風供給しながら作ると綺麗に出来ました。

image

ところで。このABS素材の耐熱温度も80度くらいのようですから、現在の仮作りのカバーを少し仕上げて使うことにしました。

image

3Dプリンターのフィラメント詰まり(Clogging)には食用油?

プリンターの出力が安定して途中でエアー印刷モードに陥ってしまっていた。
フィラメントの詰まりだ。色々原因を調査してきたがソフト動作での異常ログも見られず、印刷完了となっていた。clogged あるいは cloggingといったフレーズでforumで取り上げられているが、使い込んでくると起こる現象のようでもあり、一つの理由にはhot-endの温度管理があるのだが、対策を講じても違いが判らない。先日、hot-end自体もリニューアルして少し安定動作したかと思った矢先にエアー印刷症状が発症したので温度管理以外のファクタがあるようだった。劣化したのはフィラメント自身(PLA)が吸湿してしまったからではないかという説もあり、防湿管理などせずに裸でストックしていることも反省材料だった。seasoning/oilerという対策っぽいワードが出てきた。

seasoningとは、フィラメントに植物性油を付けて、ホットエンドにマニュアルで通すことのようだ。そしてoilerは定常的なフィラメントのパスにオイルを保つ脱脂綿のようなポットを置き、その中を通すような道具らしい。仮に適当な穴の開いているパーツにクッキングペーパータオルの切れ端を通して、グレープシードオイルに浸して、そこを通すようにした。次の写真だ。

image

結果は、次の通りでエアー印刷は解消できた。フィラメントが湿気を呼ぶとスムーズな運びができなくなるようだ。注意しよう。

 

image

結果が、とても良いのでoilerパーツを作成した。グレープシードオイルを使っています。
ペーパータオルを巻き込んでいます。

DSC_0561

 

 

ATMEGA Fuseリセッター

ちびでぃーのProの書き換えの過程でFuseを誤って書き込みISPでも動作しなくなった。
リセッターの基板(HVPP)を取り出してきて基板もろとも処置しようとしたのだが、対策がいるようだ。

P1030149

スパゲッティになっている小さな基板がちびでぃーのPro。 真ん中の基板がリセッターです。 リセットに成功するとグリーンLEDが点灯してエラーだと黄色のLEDがつく。 詳細はDEBUGポートにシリアルターミナルをつないで確認する。

P1030148

ATMEGA328(QFP32)とATMEGA328(DIP28)の違いがあるが、必要な線は取り出して接続したつもり。

FuseFix

結果はイエローで、どうも認識されないらしい。

FuseFix_Gd

普通のATMEGA168などを刺して確認してみると、動作するのだが

電源ショートモードの解析

夏休みにデジタル時計を作られた方が、作成途上で部品の付け間違えをされて部品取り外しを経る過程で不動作となったものがあった。サンプルで作成しておいたキットを持ち帰っていただき、故障モードの解析用に残しておいた。

LED thermal4

故障の事象は、電源とグランドがショートしている。

部品を全て外してもショートの現象は変わらないので、部品を外す過程などでのパターン切れも含めて確認した。パターンが細い事もあり、三箇所のパターン切れは導通確認で見つけることができて、さらに基板をマイクロスコープで拡大して電源周りの配線箇所を探して下記の場所を見つけた。

LED CLock

USB顕微鏡で拡大すると

Magnify FailMagnify-Failx

右側のトランジスタのコレクタ端子のホットラインがグランドの間でひげが出来ていた。

Solved part

Solved-partX

カッターの刃で当該箇所を加工して解決できた。

P1030139

これでサンプルが復活することになりました。ハンダ付けの不良については、指導をしていきたいと思います。