Hygain DX88は3Dプリンターで復活するか

image昨年9月に再建したばかりなのだが、この怪しげな季節を越えた暴風でアンテナが倒れてしまったのだ。全長7mほどになるDX-88は自立型で耐風速34mとのことなので35m以上の暴風圏に曝したということなのだが、ここ木更津も沖縄や小笠原並の暴風圏なのだろうか。

写真で解かるように、このバーチカルアンテナは可倒式のマウントにつけているのだが、毎回使うときに立てようとはいかずに今回のような事態で破損するということに陥っている。

前回の破損についても同様な形で強度的にはいつもベースマウントが壊れるようになっていた。毎回ベースアセンブリーを一式交換していたのだが、三度目になると対応策も進化する必要があると考えて、今回は曲がってしまったマウント部以外は自作対応することにして3Dプリントで破損した硬質ゴムの部品をナイロン樹脂で高密度出力し、かつ厚みをますなどして強度を高めることが出来るかどうかの挑戦をすることにした。当初は、ABS樹脂を考えたが、耐候性の点でABSは紫外線劣化が激しいということだったので手持ちのナイロンフィラメントを活躍させてみることにします。

ことの発端は、DX88の手配間違いで、ベースマウント部品のみの手配をしてしまったことが原因なのだが、なぜこの部品だけHygainのサイトでそのまま補修リストとは別に出てきているのかは不明だ。すでに二回ベースアセンブリーを手配してきたのだが、今回は間違えてマウント金具のみ手配してしまったので、この部品をベースにじっくり攻めてみよう。

とりあえず、最初の設計はThingiverseにあげてみた。
マウント金具が届くまでに部品は仕上げておこう。

image

image

もげた給電点もつけて、修正対応の全容を把握

image

ベースエレメントとこのパーツを介して接触して内部でM同軸雌座に接続されていた。

3Dプリンターのセルフプリント対応で確認

image

128×64のグラフィックLCDにSDスロット、ロータリーエンコーダが付いている。 ケースは、こちらで3Dプリントしたもの。

里にある3Dプリンター(RepRap)にスマートコントローラを取り付けてg-codeをSDカードで与えてパソコンクライアントから離れて、それ自身で印刷出力が出来るので、手配してあった機材をつないでみた。接続してすぐに動作するかと思ったのだが、予想に反して入手してあったスマートコントローラがグラフィックスタイプだったため、表示しないことが判明して必要なライブラリをArduinoIDEに取り込み、プリンタ制御ソフトに必要な定義指定を与えて使えるようになった。

従来はPC(Ubuntu)クライアントのReptierあるいはMattercontrolを用いてUSB接続で実施してきたのだが、既報のようにプリンタ制御基板の電源ICが壊れていたことからUSB給電でのみ動作していたことがわかり、このことが不安定さを起こしていたようだった。基板交換を行い、電源容量による問題ではないことの切り分けを行ったのだが、PCクライアント側が落ちてしまうというケースが判明したので、プリンタセルフでの動作を進めていくことにした。印刷ボリュームの大きな出力に五時間ほど要するハンダ吸煙器のスタンド部分を用いて確認している。

image
右のパソコン(Ubuntu)はお休みさせている。

image
ゆえに、USBケーブルも外してあります。

3Dプリンターの挙動不審の要因発見か・・・?

メカ的な問題、熱的な問題などが解決されて動作安定化の流れにいたものの時折ハングして出力停止に至る事象が発生していたので、プリンター単体でSDカード経由で出力させる運用を試してみることにした。すでにスマートコントローラ(20×4のLCD+スイッチ)は購入してあったので程なく動くはずだったのだが、スマートコントローラを接続してパソコンからのUSB接続をはずすと液晶のバックライトが消えてしまうのだ。5Vが出ていない。

予備のATMEGA2560を変えてみると、また動作しない。三枚目の最後の予備となるチャイナ仕様のモデル(CH340搭載)を接続すると液晶は点灯して5V供給が出来ていることを確認できた。正規品(?)の二枚ともレギュレータがやられていたのだ。いつもPCから接続していたのでわからなかったのだが、やられていたレギュレータをみるとパッケージが膨張しているのが見て取れる。

このチップは12Vから5Vに変換する低ロスのレギュレータで2200mAを供給するというものだが、これが壊れていたとすると、PCのUSBからの電源供給能力に不備が生じていたのは、いたし方ないかもしれない。

NCP1117ST50T3G USD12.14 / LOT  40PCS

Broken1 Broken2

Aitendo 7インチHDMI液晶モニターのケース報告

Aitendo 7inch液晶キットは800×480の解像度でしたので、手持ちの5inchの液晶と解像度そのものは変わりませんでしたが、まあ見やすい文字サイズになった気がします。
image

image image image

裏の制御基板がむき出しなので、せめてアクリルの保護カバーをかける予定ですが、8mmのM2.6のスタンド待ちです。
ABS材料を使って作りましたので足回りは収縮が見えますが組み立てに支障はなく、連結はABS用セメダインで接着しました。
廣杉計器からスタンドが届いたので仕上げたので写真を更新します。

image

Aitendo 7インチHDMI液晶モニターのケース作り

年末の三才ブックス主催の東京ペディションに伺った際にAitendoさんの安売りセットとして7インチHDMIモニターを購入していたのだが、まだケースを作成していなかった。IoTセット用に作成することにしてとノギスと現物測定で3D設計を進めた。3Dプリンターの出力サイズの制限もあるので分割して連結する構造にした。

image

image

image

3Dプリンターを使ったモノづくりではプリンターの癖を考慮しなければならないが、Robo3DでABSを利用すると材料がやわらかいために造形方向や構造でひずみが出る。
このスタンドの場合にはオーバーハングしている部分の天井にあたる層の積層段階で垂れるのである。この癖を理解してあらかじめ天井をかさ上げしておくことで次回の印刷にそなえている。ちなみに写真はそうした失敗を表していて、勘合部品がうまく刺さらないという構造のミスが出ている。出力方向を理解してデザインしないといけないのは、モノづくりの妙味かもしれない。
癖のあるABSをだんだん使いこなせてきたような気がしてきた。むろん、よいプリンターで精度よく作れることはありがたいことだが・・・。

最新データは以下にある。
http://www.thingiverse.com/thing:1447399

液晶モジュールは、Aitendoのイベント販売で安く購入したものだ。
http://www.aitendo.com/product/11853

3Dプリンターのツールホルダーを作成しました。

image

新学年が始まるのに、備えて環境整備中です。プリンター関連のツールは、全てホルダーにおさめるようになりました。

収縮誤差が出ても良い構造にしてABSを使いました。

image

左下の底面が収縮しているのが見て取れます。

左手前から、

ボールポイント六角レンチドライバー 部品とりはずしや、フィラメント詰まりを押し込むのに利用、対角1.5のドライバーは1.75のフィラメントチューブを押し出せます

左後ろ、プラスチック用やすり 印刷物の削り

中央スクレーパー(皮スキ) 印刷物の取り外しや、プレートの糊剥がし、マスキングテープの切り出し(刃が付いているのでとても良い)

ピンセット フィラメント屑などの除去

ドライバー Extruder部の取り付け、取り外しおもに重症の詰まった状況の場合

ニッパー フィラメント交換時点においてフィラメントを斜に切りチューブをスムースに通すため。

先曲がりラジオペンチ ノズル先などのゴミを取るのにピンセットで取れないようなものの場合、Extruderを加熱すれば取れますが・・・。

 

ニキシー管時計を作ろう (更新3)

レトロな映画で最近も見かける表示器だが数字のエレメントが重なり0-9あるいは単位などの表示ものもあるようだ。高専に入学したころ(1971)には、電子計算機室という名前で、実際にはこの表示器のついた大型電子卓上計算機が並んでいる部屋だったりもした。当時はSONY製やカシオ製の電子式卓上計算機が鎮座していた。ルート計算ができるモデルがあったが、計算をすると途中経過の表示などが確定していくさまでは表示が前後する形のこの表示管の味わいがありました。このチューブはソケットの上部から覗くようになっていてパネル面につけるタイプのものなのだろう。現在はロシアで生産しているようで、ソケットと合わせてチューブを購入した。中身はネオンサインと一緒で高圧200V程度をかけて当該のエレメントが点灯するようになる。

IMG_5821

真空管のソケットタイプではなく、ニキシー管の専用のソケットになっているらしい。
これを立てて取り付けるパネルを3Dプリンターで作成した。
IMG_5824

制御基板はATMEGAでArduino開発ベースとなっていた。基板には、高圧発生回路、フォトドライバー、高圧対応のBCDデコーダとなり、別にリアルタイムクロックのモジュールとi2cで接続する形だ。

IMG_5820

配線自体は、基本的に横一線で同じエレメントを数珠つなぎとしてアノードを各自に配線する。IMG_5825

制御基板やrtcモジュールを載せるシャーシも3dで作成した。ここにニキシー管パネルを立てる

IMG_5826

配線の終わったニキシー管パネルをつけた。

IMG_5831

これを落とし込む100円均一で買った木製ボックスにいれてみた。
この窓からニキシー管が見える予定。

IMG_5829

全体を接続して動作確認をしてみると点灯しない文字があるのでデバッグ開始

IMG_5835

今回のキットはチェコの方の作品だが、基板の改版とコードのメンテナンスがシンクしていないようで、atmegaからの引き出しピンが私の入手した基板ではあっていないようだ。古い基板をくれたのかもしれない。ソースは開示されているので修正することにして、まずケースに収めてつけてみた。こんな感じ
IMG_5845
問題点は、明らかになり基板のバージョンが古いらしいこととソースコードとマッチしていないことだった。基板をソースコードに合わせて修正してソフトを書き戻した。RGBとTICKのLEDにPWM制御をかけたいらしく仕様変更があったようだ。最新の図面は提供されていないがソースには、そのように書かれている。基板のパターンも訂正されていないのでパターンカットとジャンパーで筆者がしたであろう状態にしている。予備の基板が一枚あるので、作りたい方は、ジャンパーのみ実施していただく必要がある。パターンカットは実施済。

表示できない文字や配線していないはずの小数点が表示されるなどの挙動がありさらに追及するとニキシー管のソケットナンバリングと向きが想定外になっていて180度異なっていたことが判明した。スペックシートとまったく反転しているのには驚いた。下記のスペックシートをみて、実際のTUBEを正立で見た際に天が12ピンではないのだとは・・・・。

in-12adiagram

ソケットを180度回すだけの配線の余長があったので幸いでした。

image

操作キーは秋月の基板を天板のアクリルにとめつけて操作ボタンとLEDを出すことにしたのだが、基板加工機を使ってNCマシンの代行にさせようとしたのだが失敗してしまった。アクリル加工には基板加工とは違って出来るだけ発熱をしないようにしないといけないのだ。ドリル径より大きな穴をスイングしてあけさせようというのは周辺が溶け出してしまいみっともない形になった。1mm程度のドリルで上下の打ち抜きのみをさせるように次回はしたいと思います。
image

出来上がりを確認してみると1,2,5の文字が表示できないという現象となり74141がおかしいようだ。ついてきたパーツはロシア製の互換チップのK155だったが、中華マーケットに手配をかけたが、いまさら秋葉原にもなさそうなので、入荷したら再開しよう。

原因は、基板のパターン間違いだった。A-Dが入れ替わっていた。途中表示をしなかったのは、10進デコーダの範囲外となっていたからだった。うーん、困ったものでしたがソース修正して無事表示が出るようになりました。

DSC_0587

予備の基板がありますので、作りたい方はNIXIE管の手配で作れそうです。

DSC_0588

追加のバグ報告 アノードの出力ピンがコネクタ順で時刻の10位と1位が入れ替わっていました。なぜか、この基板設計した人は間違ったままにしていたようです。表示がおかしいので、ソース側で修正しつつ、基板の間違いを確認しました。

作者からソースコードの旧ハード(Revisionなし)に対応するものが提供されましたが、若干の相違があったのでレポートを返しておきました。

時刻表示もOKです

image

カレンダー表示もOKです

image

3Dプリンターのサーミスター固定方法の課題

ExtruderのブロックをE3D社のVolcanoに変更した話は報告していた通りだが、Temperature Resetという現象が発生したようだった。実は、この現象は多くみられる現象のようだ。

3Dプリンターの仕組みとしてExtruderブロックの温度測定と加熱制御のループ制御が一つのタスクとしてあり、この過程でサーミスターのクラックなどで欠測した場合にはエラー停止するようになっている。

見た目にはわからないものの外してみたところ確かにクラックが生じていたようだ。

写真を撮りそこなったので、新品の状況を示します。中央の留めビスの下に丸穴が彫られていて、そこにサーミスターを差込み、ワッシャをかまして留めビスで固定するという形です。固定する際に回転軸のストレスがかかるのは確かなので解決策が必要かと思われましたが、すでに固定金具つきのサーミスターが出ているようです。

image

中華サイトで販売していのをオーダーはしました。下記のようなものです。

とめ金具つきサーミスター

とりあえず、サーミスター交換用にコネクター接続にしておいた。ロック付きのコネクターにしたのはいうまでもない。

image

ハンダ吸煙器の作成

USBで動作する120ミリのfanを搭載する形でハンダ吸煙器を作りました。
試作過程では、適当なファンがなかったので92ミリからのスロートでトップヘビーになりましたが120ミリファンではハンダ吸煙フィルタサイズ130*130搭載でも短くすることが出来ました。

image image image image

3Dプリンター整備状況

里のRobo3Dプリンターは、Reprapベースのものですが、Kickstarterのベータ品から始まりましたが、改造改版を重ねて、ほぼ最新モデルと同等になっています。

強力なホットエンド E3D Volcanoを搭載しました。最大0.4mmの積層指定ができます。
印刷速度を上げたい場合には、従来より二倍ほどの速度で印刷が可能です。ただし、積層密度を0.4mmにした場合ですが・・・。
V6と比較すると長さが10mmほど増えました。これにともない造形物の高さが低くなりました。
他にもZ軸のリニアシャフトを国産標準品に変えた為オリジナルよりさらに10mm短くなりましたのでトータルで20mm低くなりました。放熱フィンとホットエンドの間が分離されているのが特徴で熱がフィラメント送り出しの部分では十分に冷えるようになっています。
image

E3D Volcano(左)とE3DV6(右)の比較をみると、フィラメントの溶融スペースが長いことが分かります。
image

image

ホットエンドが強力になったので、放熱フィンの部分でのファンダクトも耐熱を考慮してアルミ板と板材で作りました。さらにマウント用のパーツをPLAで作り冷却用の3cmファンを搭載しています。取り付けはextruderのベースにつけています。
image
image

アクリルで、固定用ノリのマスクを作っています。ヘアーリング用スプレーを使うようにしています。従来の3M 77は強力すぎて後処理が大変でした。
image

フィラメントホルダーは上部に簡易な形にしてサイズに応じて変えられるようになっています。

image

ケースの底部は、下駄を履かせて冷却用の空気が取り込みやすくしました。
IMG_5703

ホットエンドの強化などに伴い、RAMPSシールドの放熱が必要となりクーリングファン4cmをマウントしています。この空気取り入れのためにかさ上げをしています。IMG_5709

PLA出力時に水平出力ができるように空間で強力に冷却する目的でラジアルファンによるダクトを作成してヘッド先の高さに合わせて細い強力な風が出るようにしています。
IMG_5712