3Dプリンター中華互換機と最近の売れ筋モデルとの違い

組み込みの里に追加導入した3DプリンターはMakerbot社のreplicator2x互換ということになる。最近は、このクラスが増えていて、売れ筋はFlashForge社のCreator Proということになるらしい。
いずれも、Dual nozzleのブロックが搭載されている点、出力ステージが上下してエクストルーダー自体はX-Yに移動する形式で筐体構造も同じなのだが、フルクローンか進化型なのかで異なっているようにみえる。

imageExtruderブロックはリニアレールの上のキャリッジに装着されていて、温度センサー・クーリングファン・ヒーターなどが搭載されているので可撓性の高いしなやかなワイヤーが本体に引き出されて接続されるという構成である。

今回、Exruderの分解清掃を実施しようとしたときに安易に考えて、ヒーターの電流が大きいものについては、MOLEXの3191を使い、XHコネクターを使ってロック式のプラグイン構成にしようと考えたのだがカットしたセンサーのワイヤーは固いもので可撓性があるものの、半田付けが難しくXHコネクターのはんだ付けは断念して接続用の基板を製作してターミナルを搭載して締め付ける形にしたのだった。
makerbot-replicator-2x-extruder-assembly-3興味があったので他のプリンターについて調べてみたところ、オリジナルのMakerbot社のreplicator2xについては、長いワイヤーのままの搭載で保守に際しては、これらの線を処理しながら行うという点で現在のものと同一らしいということが分かった。

 

 

 

 

FlashForge2保守に関して、進化していたのは、FlashForge社のCreator Proだった。ブロックだけ容易に取り外しが可能なように中継ターミナルの基板が同様な構成で作られていた。やはりセンサーのワイヤーのはんだ付け性が悪いのかターミナルで取り付けるようになっていた。

私のインプリは中途半端で、センサー側からの信号は圧着してXHを適用したのが違いだが、本来は、本体からのワイヤリングも直して、このような形にすべきだろう。

 

 

 

3Dプリント安定化のベースが出来つつあります

3Dプリンターが到来して三年余り、今は二台目も登場してパラレル運転することもあり新旧両機種の癖の違いなども進化として理解している。旧型機種とはいえ、当該メーカーの更新や最新型のホットエンドへの改修も含めてそれなりに進化している。進化できないのはメカにともなう速度の問題と、構造に基づく振動などの課題だ。とはいえ先日作成したヒートカバーでABS出力も安心して出せるレベルになった。

新型プリンターはFlashforgeなどの相当品で、出力プレートが上下動するタイプでX-Y軸の水平面が保持される点なども含めて高速動作が出来るようになっている。構造からくるサイズ制限は、筺体に対して出力プレートの左右にエクストルーダーの余地がそれぞれ必要なことや、既にDualヘッドの時代になっているのでそれも要因の一つだ。出力サイズを確保して安定に出力するという目的に適うのはデルタ型かもしれない。Dualヘッドの並行性確保が難しいという噂などがあり、メカで水平が確保されるモデルとして現在の機種を選定したのだが、三つのモータを駆使して制御するデルタ型のほうが実は安定かつ力強く制御できるのかもしれない。

旧型プリンターはAutolevel機能を導入したので、この点については毎回の調整が不要になりとても便利だ。新型プリンターは構造的に本来は最初にマニュアル調整すればふとは不要のはずなのだが、ヒートプレートの過熱状態でのたわみの相違があるのか今のところ毎回微妙な調整を余儀なくされている。こちらも出来ればAutolevelの多点検知補正でアルゴリズムで解決できるように改造をしていきたいと思う。

ここまでは、現状認識までの話なのだが、実際問題として安定出力していく上でどちらにも重要な課題は、実はフィラメント供給の安定が鍵だといえる。

新型プリンターでも発生した、フィード不良による停止は、実はフィラメントガイドが課題だったし、同様に旧型でも同様なことが懸念されたし思い返される事態が記憶にあったのでフィラメントガイドの再設計を行った。Flashforgeでも共通の課題だったフィラメントスプールからの引き出し位置をスプール幅の中央位置に合わせることでフィラメントがスプール内部で噛むことが回避されるようになった。片寄せをしていた場合には噛みこみが発生していた。

Robo3Dではフィラメントを上部に置いてはいたものの、噛みこみについての理解は十分でなかったし、中央位置へのガイドとともにスプールが安定に回るようにという意味も含めてひっかけではなくてベアリングを追加してスプールがスムーズに回るようにした。従来は、テンションがさらにかかる要因になっていた。また取り付け位置も高さを稼いでフィラメントガイドに追加したガイドホールの角度もスムーズになるようにした。

3Dプリンターでフィラメント供給が止まる要因には様々なものがあるが、色々つぶしていった結果、残ったのはここになる。もうホットエンド供給内部でフィラメントが詰まることはなくなった。冷却が十分に必要ということの認識と対策が出来たことに基づく。ホットエンドをヒートアップして、フィラメントさえ送りこめるようにしてあげれば内部を掃除する必要はなくなったと感じている。

まだまだほかの事由も起こってくるのかもしれないが、三年余りの運用を通じて学んできた経験からの対策は、複雑な3Dプリンターのシステム理解についてゴールに近づいているかもしれない。

[注意] STLファイルの加工について続報 Meshmixer

既存のSTLファイルを加工して利用する場合についてデータ出力で問題となる場合がわかった。

imageこの写真の例では、左端のデザインをベースにして一部の脚のみを分割して伸ばしたいというものだったのだが、真ん中の事例は、そのままやったことが明確なままに部材も分断されて出てきた。

右側の事例は、そのことが判明したので対策をしたものです。Meshmixerで面カットなどで分断した場合で別の部品や拡張した形で接続しようとする場合に起こりました。

Gcodeベースで確認すると違いは次の通り。

スクリーンショット (55)結合しただけの状態で出したSTLファイルは実際には内部は結合していませんでした。Mattercontrolでgcode生成した場合の第一層の写真です。

 

 

スクリーンショット (53)結合した後にMake solid(固体化)というアクションをとることで作ったSTLファイルでは綺麗に内部が固体化されたのが確認されました。

 

 

必要な手続きをMeshmixerで再確認すると

スクリーンショット (44)これが内部で固体化されていないSTLファイルを読み込んだ状態でObject Browserを開きました。

スクリーンショット (45)

 

Edit->Separate Shellを実行すると内部に三つのパートがあったことがわかり分解されました。
Object Browserで三つのパートを再選択して、Combine(結合)します。

 

 

スクリーンショット (46)Object Browserでも一つになりましたが、これではもとに戻っただけですね。

スクリーンショット (49)

 

 

Edit-> Make solidを選択するとメニューが出てきますので、固体化する際の精度などを選択できます、ここではsolid accuracyを最大の512にしました。そしてacceptを実行すると

 

 

スクリーンショット (50)Object Browserにもう一つのデータとして名前に(solid)が付加されたものが作られました。

 

 

 

スクリーンショット (51)固体化していないオブジェクトを一旦Object Browserでゴミ箱に入れて

 

 

 

スクリーンショット (52)このオブジェクトに対して、Edit->Separate shellを実施すると出来ないよとアラートが出ますので、これで固体化が完了しました。

 

 

スクリーンショット (54)Object Browserで、固体化したオブジェクトを選択した状態でFileメニューからExportを選んで、STL形式で出力することで完了となります。

 

 

 

 

 

[懸案事項] MatterControl と QIDITECH関連

ヒートベッドの温度設定ならびにフィラメント温度設定などが正しくx3gファイルに設定されないと思われる事象の発生

  1. PVAフィラメントの入荷で、サポート材料をPVAにしようと、まずは温度設定を振って試験データ採取をしようとしているのですが、個々に設定を変えたはずのx3gファイルを読み込ませても機体が抱えている設定が変更されないようにみえる。
    1. Sailfish firmware側の設定でGcode温度設定に対してOverrideするという設定があり、これがONになっている場合には機体が抱えている設定が反映されるので、SDカードにゆだねる場合には、設定をOffにする [解決1]image
  2. PLA利用での出力の際には、最初のフィラメント垂れが発生するように見えて、これを回避するにはloopを形成してそこに逃がす必要がありそうなのだが、loop指定もうまく反映されないように見える。mattercontrol側の課題か確認要
  3. PVAフィラメントのヒートベッド設定は高温設定が不要とのことで、ABS材料とPVAフィラメントの組み合わせはダメらしいという情報もある。PLA+PVAでないと使えない可能性あり
  4. フィラメント詰まりが起きた、どうもDualExtruderのブロックに取り付けているヒートシンクが正しく熱接触していなかったようだ。ばらしてみるとサーマルコンパウンドやグリスもなかった。ヒートシンクがついているのに片手落ちだ。
    1. image
  5. PVAのフィラメントはノズルが詰まりやすいようだ、何か対策が必要な気がする。

もろもろ確認の一日になりそうです。予定では、細密出力のトライをしたいのですが、先は長そうだ。

[便利]フィラメント詰まりの清掃工具に流用

imageスプリング持ち手のワイヤーで線径は0.8ミリ、1.0ミリ、1.3ミリ、1.6ミリと4種類あるのだが全部そろえると便利だ。

実は、これは電動ポンプ式の半田吸引器のクリーニングピンだ。HAKKOだとこの四種類がそろう。

 

[解決その後] フィラメントスプールサイズとフィード課題

image組み込みの里では、割安なフィラメントを購入するようにしているので毎回スプールサイズがまちまちだったりする。およそ1kGのフィラメントも径や厚みが多彩だが、今回はスプール径が大きいもので、写真でいう右側のものだ。

このサイズだとガイドチューブの配置からフィラメントのフィード時の動作としてからがってしまいフィードが止まってしまう事態が起きてしまった。フィードが止まってしまうとフィラメントドライブギアがカスを作り出して詰まってしまいこまった事態になってしまう。掃除は大変だし、時間のかかる出力が失敗したりすることも含めて影響は甚大だ。

対策としてはスプールを逆に設定するようにした。

この問題は、メジャーな課題のようでスプール依存性からの解決に向けてPTFEのチューブ固定位置を空間に移動する形で、先人たちがパーツを作られていた。このプリンターはCreator ProのCloneマシンなので、良くも悪くもコピーされて再現しているということだった。となりのマシンのスプールを借りて、スプールガイドパーツを作成することにした。この現象が起きたのは、透明のフィラメントが切れて、白色に移行したことで発生していたのだった。

image隣のマシンのスプールを利用して十分な空間をあけて、そのスプール問題対応パーツを作成しているのはブートストラップしている状況といえるかもしれない。

フィラメントガイドの補助部品を作ってスプールに対して中央の位置で引き取るようになった。左がオリジナルで、右がパーツ追加後である。

少し大きな部品を作ることで安定になったかどうかはひきつづき評価します。

imageimage左側は処置前

右側は処置後

 

 

 

 

 

image出力に要した時間は、内部サポートもあり11時間あまりでしたが、翌朝無事にトラブルなく完了しました。このサポートに隠れている部品で、古いプリンターの制御パネルをずらして配置することが出来ました。双方のプリンターがABS出力などで恒温状態で出力できるようになりました。

 

 

 

 

imageフィラメントの具合が確認できるように壁にミラーを取り付けました。今日からはPVAフィラメントをセットしてみます。

 

Robo3DにもABS保温カバーを作ろうPart2

imageさて、左のRobo3Dプリンターに保温カバーを取り付けるとなると、課題がある。どこかというと

2014-12-28_22.10.30_preview_featured

 

 

 

そう、制御コンソールの取り付け位置が保温カバーのそれと当たるのである。

 

 

 

2014-12-28_22.10.38_preview_featured

背面にある取り付け部品をずらすことが必要なのだが、複雑な形状のSTLデータの削除は大本の3Dデータのものがないと難しいのだが、STLファイルを直接いじるツールも存在するが使い勝手というと、粘土をいじる感覚のような使い方を念頭にしているようで正確な部品を作るといったことには向いていないようだ。そんなMESHMIXERを使うことにする。このソフトもAutodesk社から提供されている。

 

2016-07-17左側のSTLファイルを必要な角度で面でカットして(Sliceする)、当該のパーツをトランスフォームのメニュから移動させて右側の形にして、STLファイルとして保存した。足元のカバーの長さも若干カットが必要だ。

[更新2]Robo3DにもABS保温カバーを作ろう

Enclosure_.125_No_feet_preview_featured二台目のプリンターが登場してRobo3DのABS出力に課題があるという話でサポートが出来ないかというのも可哀相なのですが、写真のような立派なケースを作られて保温している方もいらっしゃいますし米国では発売もされていますが、レーザー加工が必要だったりと費用もかさむので二の足を踏んで今となっていました。

 

ホームセンターで売っているプラダンでなんだか作れそうな予感がしてきたので、次のような部品を作って、上のような形状で作ってみようと思います。一部はアクリルにするかもしれませんが。

imageこれでコーナーをクリップします。同様な角のパーツも作る予定です。プラダンの材料は300mm幅で90cmでも300円しませんし、厚みも4mmで保温性の点でもよさそうです。見た目の透明でないことが課題ですが、一部アクリルにしても良いかと思います。

仮組みした感じは下のようです、実際には角に裏側から透明テープがプラの角材を当てるのがよいのかもしれません。

思いついたら吉日とホームセンターで見かけた足でプラダンを買ってきました。カーブは、物にあてて、プロットしました。カッターで切れて簡単imageですね。

長いラインの部分の詰め物はテープで良いかな・・・仮止めは色付きでNGだけどね

 

 

 

 

 

 

imageimage

とりあえず、少し量産してみる。
この構造の部品は、サポート無しで綺麗にでる。コーナはサポート指定しないとNGでしょうね。

 

 

 

 

 

 

 

 

 

 

imageプラダンだと中身が見えないのであり合わせの4mm厚みのアクリル端材を使って窓を付ける形にした。上と前から覘けるようにした。プラダンの材料として連結とコーナー部品は売っていたので、それを使っている。

 

 

 

 

 

imageimageimageimageimageようやく最終形に近づいた。あとは液晶コントローラの位置を右にずらす部品待ちです。

 

 

結構奥に長いことがわかる。この中で、テーブルが前後に移動する構造なのです。新型プリンター同様に保温筺体に入った形になるのでABSの出力などをこれで変形問題を少しでも解決したい。

 

カバーはひっかけてあるだけなので、軽く簡単に外すことが出来ます。

Robo3Dフィラメント交換のワンタッチ化

新型プリンターが来て、3Dプリンターの二台体制になると、使い勝手の差で改善できるものは改善したいということが鮮明になる。

フィラメント交換において、エクストルーダーに対してフィラメントを押し付けるネジの開け閉めならびに、その際に飛んでしまった場合のワッシャー収拾のわずらわしさなどがRobo3Dには残っていたので、レバーで交換出来るQIDITECHのプリンターと同様な形にしようということになり、適当な先人達の成果を探したところよさそうなQuick Filament 交換対応という工作が出てきた。
こ゛

imageそして、新型プリンター側でABSを使って部品を出力してみました。生憎とM4の長いビスと書かれていたものが50mmでは不足していることが判明して70-80mmのビスを買ってきます。

また、洗濯バサミのような上の部品にたいしてM4のビス二本を通した下の部品をひっかけて使うのですが、下右側の部品はオリジナルのまま出力しましたがサイズの差からビスを通すと穴径が小さくてフィラメントによる積層が割れてしまいました。経験値として学んでいたことでしたが、忘れていました。2%のサイズ増しをこうしたパーツには適宜適用することで解決しました。下左がそうして出来た部品です。

3Dプリントで作成する部品は、こうした精度が気持ちよいので、印刷で派生するいくつかの誤差については理解してあらかじめ対策をすることが、低価格の3Dプリンターを使いこなしていく要のように感じます。

image生憎とホームセンターであったM4は、50mmまでで、壁に止めつける部品の中にM4 64mmのネジを見つけるのがやっとだった。しかし、これでも長すぎるようで切る羽目にはなった。

収まり具合からするとよさそうなのだが、ビデオで見れる状況とは異なるので、まだ何か考え違いかベースの部品も改造がいるのかもしれないようだ。

image

[Solved] QIDITECH Avatar IV 3Dプリンター HomeOffsetパラメータ調整

image位置調整の目的で、サークル校正用出力データをプリントしてプラットホーム周囲からの距離を計測しています。

このズレをHome Offsetパラメータ(Sailfish Firmware)設定に反映すればよいという理解でトライしています。

ほぼ現在の位置でも入っていると思われますが印刷開始時点でヘッドが左に振った際に大分当たっていることからも、この結果は正しく、まだズレているという認識です。現在のOffset値はsailfish firmwareのサイトから持ってきた値です。

X home offset 152
Y home offset 75

当たらなくなるほどの位置にしたところ、センターの位置も適切な位置に近づいたようです。

image次回の報告で最終パラメータ(Sailfish Firmware)をお伝えできそうですね。
当たらなくなりました。X Home offsetもY Home offsetも結果に基づいて追い込みができるようになりました。

このデータに基づいて調整したところ

ほぼセンターの位置だしはできたと思われます。

image結果は、次の通りです。

0.5mmをX-home offsetにかけて写真のようなFirmwareパラメータにしました。

 

 

image image